Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 1-Benzylsulfanyl-2-[(2-chlorophenyl)diazenyl]benzene

#### Pranjit Barman,<sup>a</sup>\* Tirtha Bhattacharjee<sup>a</sup> and Rupam Sarma<sup>b</sup>

<sup>a</sup>Department of Chemistry, National Institute of Technology, Silchar 788 010, Assam, India, and <sup>b</sup>Department of Chemistry, Indian Institute of Technology, Guwahati 781 039, Assam, India

Correspondence e-mail: barmanpranjit@yahoo.co.in

Received 21 June 2010; accepted 30 June 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.088; data-to-parameter ratio = 15.1.

The title compound, C<sub>19</sub>H<sub>15</sub>ClN<sub>2</sub>S, a divalent organosulfur compound belonging to the class of ortho-mercaptoazo compounds, is non-ionic in nature. The azo group in the molecule is moved away from the S atom to attain the stable trans-azo configuration. Here the S atom is not electron deficient, so no intramolecular N····S interaction exists. Due to steric reasons, the molecule is non-planar: the chlorophenyl and benzyl rings are oriented at dihedral angles of 3.21 (8) and  $78.18(5)^{\circ}$ , respectively, with respect to the thiophenyl ring. There are no hydrogen bonds and the crystal structure is stabilized by van der Waals interactions.

#### **Related literature**

For background to our study of the effect of substituents at the 2'- and 4'- positions of azobenzene-2-sulfenyl compounds and related structures, see: Karmakar et al. (2001); Sanjib et al. (2004); Kakati & Chaudhuri (1968). For the reactivity of sulfenyl compounds towards biomolecules, see: Fontana et al. (1968).



#### **Experimental**

#### Crystal data

| -                              |                                           |
|--------------------------------|-------------------------------------------|
| $C_{19}H_{15}CIN_2S$           | V = 1687.8 (4) Å <sup>3</sup>             |
| $M_r = 338.85$                 | Z = 4                                     |
| Monoclinic, $P2_1/c$           | Mo $K\alpha$ radiation                    |
| a = 15.493 (2) Å               | $\mu = 0.35 \text{ mm}^{-1}$              |
| b = 5.4218 (8) Å               | T = 296  K                                |
| c = 20.206 (3) Å               | $0.21 \times 0.16 \times 0.14 \text{ mm}$ |
| $\beta = 96.055 \ (9)^{\circ}$ |                                           |
|                                |                                           |

#### Data collection

Refinement

3139 reflections

S = 1.01

 $R[F^2 > 2\sigma(F^2)] = 0.037$  $wR(F^2) = 0.088$ 

| Bruker APEXII CCD area-detector |
|---------------------------------|
| diffractometer                  |
| 16728 measured reflections      |

3139 independent reflections 2140 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.042$ 

208 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.14 \text{ e} \text{ \AA}^ \Delta \rho_{\rm min} = -0.17$  e Å<sup>-3</sup>

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

TB and RS thank the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of fellowships.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2215).

#### References

- Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fontana, A., Veronese, F. M. & Scoffone, E. (1968). Biochemistry, 7, 3901-3905
- Kakati, K. K. & Chaudhuri, B. (1968). Acta Cryst. B24, 1645-1652.
- Karmakar, S., Talukdar, A. N., Barman, P. & Bhattacharjee, S. K. (2001). Indian J. Pure Appl. Phys. 39, 357-360.
- Sanjib, K., Kabita, P., Barman, P., Hazarika, D. & Bhattacharjee, S. K. (2004). Acta Cryst. E60, 0179-0180.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2010). E66, o1943 [doi:10.1107/81600536810025730]

### 1-Benzylsulfanyl-2-[(2-chlorophenyl)diazenyl]benzene

### P. Barman, T. Bhattacharjee and R. Sarma

#### Comment

To investigate the effect of substituents on the 2'- and 4'-positions of azobenzene-2-sulfenyl compounds (Karmakar *et al.*, 2001; Sanjib *et al.* 2004) in the formation of thiadiazolium structures by *ortho* azo-sulfur interaction and to study the reactivity of sulfenyl compounds towards biomolecules (Fontana *et al.*, 1968), the title compound (Fig. 1) is studied. The sulfenyl sulfur S1 is  $sp^3$  hybridized and nucleophilic in nature for which the azo group moves away from it to attain the stable *trans*-azo-configuration. Such a situation was also found in azobenzene-2-sulfenyl cyanide (Kakati & Chaudhuri, 1968). The  $Csp^3$ -Ssp<sup>3</sup> [1.8064 (19)Å] bond is a normal covalent bond. The  $Csp^2$ -S [1.7655 (19)Å] bond length is in the expected range and N1=N2 [1.247 (2)Å] bond length is in the expected range of an azo N=N bond length so there will be no resonance donating electron delocalization from the sulfenyl sulfur S1 into the extended conjugated system of the *trans*-azobenzene unit [no d-resonance between (vacant d orbital) S1 and the aromatic  $\pi$ -cloud] and no sulfur-*ortho*-azo interaction. The benzyl unit is moved away from the thiophenyl unit due to steric reason. There are no hydrogen bonds and the crystal structure is stabilized by Van der Waal's interactions (Fig.2).

#### Experimental

To a solution of 2-benzylthioaniline in glacial acetic acid an equimolar amount of 2-chloronitrosobenzene in glacial acetic acid was added and stirred for 45 minutes. During stirring temperature was maintained between 323 to 343 K. Then the solution was kept in a dark place overnight at room temperature. Orange crystals of 2'-chloro-2-thiobenzylazobenzene were obtained, filtered off, washed with dilute acetic acid and dried, which melted at 414 K.

#### Refinement

Hydrogen atoms were placed in calculated positions with C–H = 0.93Å and 0.97Å for aromatic and methylene H respectively and refined as riding with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

#### **Figures**



Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.



Fig. 2. The packing diagram of the title compound, viewed along the b axis.

### 1-Benzylsulfanyl-2-[(2-chlorophenyl)diazenyl]benzene

| F(000) = 704                                          |
|-------------------------------------------------------|
| $D_{\rm x} = 1.334 {\rm ~Mg~m}^{-3}$                  |
| Melting point: 414 K                                  |
| Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Cell parameters from 3629 reflections                 |
| $\theta = 4.0 - 25.5^{\circ}$                         |
| $\mu = 0.35 \text{ mm}^{-1}$                          |
| T = 296  K                                            |
| Needle, orange                                        |
| $0.21\times0.16\times0.14~mm$                         |
|                                                       |

#### Data collection

| Bruker APEXII CCD area-detector diffractometer | 2140 reflections with $I > 2\sigma(I)$                                    |
|------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube       | $R_{\rm int} = 0.042$                                                     |
| graphite                                       | $\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$ |
| $\varphi$ - and $\omega$ -scans                | $h = -18 \rightarrow 18$                                                  |
| 16728 measured reflections                     | $k = -5 \rightarrow 6$                                                    |
| 3139 independent reflections                   | <i>l</i> = −24→24                                                         |
|                                                |                                                                           |

#### Refinement

| methods                                                                                                         |     |
|-----------------------------------------------------------------------------------------------------------------|-----|
| Least-squares matrix: full Secondary atom site location: difference Fourier m                                   | iap |
| $R[F^2 > 2\sigma(F^2)] = 0.037$ Hydrogen site location: inferred from neighbouring sites                        | g   |
| $wR(F^2) = 0.088$ H-atom parameters constrained                                                                 |     |
| S = 1.01<br>$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0254P)^{2} + 0.3762P]$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |     |
| 3139 reflections $(\Delta/\sigma)_{max} < 0.001$                                                                |     |
| 208 parameters $\Delta \rho_{max} = 0.14 \text{ e} \text{ Å}^{-3}$                                              |     |
| 0 restraints $\Delta \rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$                                               |     |

#### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

 $U_{\rm iso}*/U_{\rm eq}$  $\boldsymbol{Z}$ х y **S**1 0.14479 (3) 0.06781 (18) -0.10089(10)0.08652 (2) Cl1 0.50431 (4) 0.68379 (13) 0.11015 (3) 0.0911(2)N2 0.29240 (10) 0.2094 (3) 0.08968 (7) 0.0599 (4) N1 0.36050(10) 0.3311(3)0.10180(7)0.0619(4) C7 0.35709 (12) 0.5064(4)0.15401 (8) 0.0567 (5) C2 0.42276 (12) 0.6809(4)0.16243 (9) 0.0619(5)C3 0.42403 (16) 0.8556 (4) 0.21239(11) 0.0794 (6) H3 0.095\* 0.4678 0.9737 0.2174 C6 0.29365 (14) 0.5079(4)0.19748 (10) 0.0759(6) H6 0.2493 0.3917 0.1927 0.091\* C14 0.07222 (13) -0.3539(4)0.06272 (10) 0.0729 (6) H14A 0.0480 0.0167 0.087\* -0.3352H14B 0.1036 -0.50890.0670 0.087\* C5 0.29587 (17) 0.6806 (5) 0.24774 (11) 0.0908 (7) 0.6793 0.109\* H5 0.2534 0.2770 C4 0.36019 (18) 0.8533 (5) 0.25459 (11) 0.0900(7) H4 0.9707 0.108\* 0.3608 0.2882 C9 0.22512 (12) -0.1349(3)0.03137 (8) 0.0555 (5) C8 0.29495 (12) 0.0306 (3) 0.03821 (8) 0.0557 (5) C13 0.36052 (13) 0.0163 (4) -0.00329(9)0.0700(6) H13 0.4061 0.1286 0.0015 0.084\* C10 0.22486 (13) -0.3157 (4) -0.01772 (9) 0.0657 (5) H10 0.1796 -0.4289-0.02320.079\* C11 0.29086 (14) -0.3283(4)-0.05799(10)0.0726(6) H11 0.2897 -0.4508-0.09030.087\* C12 -0.05150(10)0.0776 (6) 0.35836 (15) -0.1636(4)H12 0.4023 -0.1734-0.07940.093\* C16 0.00046 (14) -0.5197(4)0.15911 (10) 0.0756 (6) H16 0.0450 0.1663 0.091\* -0.6346C15 0.00057 (13) -0.3535(4)0.10759 (9) 0.0611 (5) C20 -0.06639(15)-0.1870(4)0.09826 (11) 0.0791 (6) H20 0.095\* -0.0673-0.07380.0636 C19 -0.13194(15)-0.1838(5)0.13896 (13) 0.0887(7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supplementary materials

| H19 | -0.1767       | -0.0695     | 0.1317       | 0.106*     |
|-----|---------------|-------------|--------------|------------|
| C18 | -0.13148 (16) | -0.3489 (5) | 0.19034 (12) | 0.0871 (7) |
| H18 | -0.1756       | -0.3469     | 0.2182       | 0.104*     |
| C17 | -0.06553 (16) | -0.5167 (5) | 0.20023 (11) | 0.0887 (7) |
| H17 | -0.0650       | -0.6298     | 0.2349       | 0.106*     |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-----------------|-----------------|--------------|--------------|--------------|
| S1  | 0.0700 (3)  | 0.0685 (4)      | 0.0670 (3)      | -0.0132 (3)  | 0.0166 (2)   | -0.0146 (3)  |
| Cl1 | 0.0710 (4)  | 0.1094 (5)      | 0.0936 (4)      | -0.0207 (3)  | 0.0127 (3)   | 0.0060 (4)   |
| N2  | 0.0640 (10) | 0.0614 (10)     | 0.0542 (9)      | -0.0060 (9)  | 0.0061 (7)   | -0.0025 (8)  |
| N1  | 0.0625 (10) | 0.0661 (11)     | 0.0570 (9)      | -0.0087 (9)  | 0.0061 (8)   | -0.0041 (8)  |
| C7  | 0.0628 (12) | 0.0573 (12)     | 0.0491 (10)     | -0.0007 (10) | 0.0015 (9)   | 0.0007 (9)   |
| C2  | 0.0628 (12) | 0.0643 (13)     | 0.0565 (11)     | -0.0009 (10) | -0.0035 (9)  | 0.0068 (10)  |
| C3  | 0.0925 (17) | 0.0642 (15)     | 0.0764 (15)     | -0.0095 (12) | -0.0156 (13) | -0.0024 (12) |
| C6  | 0.0813 (15) | 0.0829 (16)     | 0.0654 (13)     | -0.0117 (13) | 0.0172 (11)  | -0.0086 (12) |
| C14 | 0.0833 (15) | 0.0647 (14)     | 0.0733 (13)     | -0.0175 (11) | 0.0208 (11)  | -0.0102 (11) |
| C5  | 0.1033 (19) | 0.102 (2)       | 0.0701 (15)     | 0.0007 (16)  | 0.0217 (13)  | -0.0170 (14) |
| C4  | 0.117 (2)   | 0.0813 (18)     | 0.0691 (15)     | 0.0060 (16)  | -0.0025 (15) | -0.0192 (13) |
| C9  | 0.0639 (12) | 0.0526 (12)     | 0.0497 (10)     | 0.0006 (9)   | 0.0048 (9)   | 0.0017 (9)   |
| C8  | 0.0619 (12) | 0.0567 (12)     | 0.0479 (10)     | 0.0004 (10)  | 0.0038 (9)   | -0.0004 (9)  |
| C13 | 0.0678 (13) | 0.0787 (15)     | 0.0651 (12)     | -0.0100 (11) | 0.0147 (10)  | -0.0071 (11) |
| C10 | 0.0750 (14) | 0.0611 (13)     | 0.0613 (12)     | -0.0067 (11) | 0.0081 (10)  | -0.0063 (10) |
| C11 | 0.0916 (16) | 0.0682 (15)     | 0.0598 (12)     | 0.0007 (13)  | 0.0162 (11)  | -0.0110 (10) |
| C12 | 0.0816 (16) | 0.0851 (17)     | 0.0697 (13)     | -0.0026 (13) | 0.0243 (11)  | -0.0105 (12) |
| C16 | 0.0816 (15) | 0.0670 (15)     | 0.0794 (14)     | 0.0016 (12)  | 0.0139 (12)  | 0.0072 (12)  |
| C15 | 0.0672 (13) | 0.0541 (13)     | 0.0622 (12)     | -0.0105 (10) | 0.0078 (10)  | -0.0069 (10) |
| C20 | 0.0867 (16) | 0.0689 (15)     | 0.0822 (15)     | -0.0033 (13) | 0.0122 (13)  | 0.0096 (12)  |
| C19 | 0.0774 (16) | 0.0795 (17)     | 0.1111 (19)     | 0.0054 (13)  | 0.0188 (14)  | -0.0010 (16) |
| C18 | 0.0842 (17) | 0.0862 (19)     | 0.0961 (18)     | -0.0160 (15) | 0.0348 (14)  | -0.0174 (15) |
| C17 | 0.108 (2)   | 0.0824 (18)     | 0.0803 (15)     | -0.0092 (16) | 0.0300 (14)  | 0.0124 (13)  |

## Geometric parameters (Å, °)

| 55 (19) | C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.401 (2)                                            |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 54 (19) | C8—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.386 (2)                                            |
| ) (2)   | C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.377 (3)                                            |
| 7 (2)   | С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                                               |
| 5 (2)   | C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.374 (3)                                            |
| 5 (2)   | C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                                               |
| 7 (3)   | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.371 (3)                                            |
| 5 (2)   | C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                                               |
| 3 (3)   | С12—Н12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                                               |
| 2 (3)   | C16—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.377 (3)                                            |
| 00      | C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.384 (3)                                            |
| 9(3)    | C16—H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300                                               |
| 00      | C15—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.373 (3)                                            |
| 5 (2)   | C20—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.373 (3)                                            |
|         | $ \begin{array}{c} (19) \\ (4) \\ (2) \\ (2) \\ (2) \\ (2) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (5) \\ (2) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3) \\ (3)$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| C14—H14A                   | 0.9700            | C20—H20                         | 0.9300                   |
|----------------------------|-------------------|---------------------------------|--------------------------|
| C14—H14B                   | 0.9700            | C19—C18                         | 1.371 (3)                |
| C5—C4                      | 1.364 (3)         | С19—Н19                         | 0.9300                   |
| С5—Н5                      | 0.9300            | C18—C17                         | 1.367 (3)                |
| C4—H4                      | 0.9300            | C18—H18                         | 0.9300                   |
| C9—C10                     | 1.394 (2)         | C17—H17                         | 0.9300                   |
| C9—S1—C14                  | 102.30 (9)        | C9—C8—N2                        | 115.27 (16)              |
| N1—N2—C8                   | 114.54 (15)       | C12—C13—C8                      | 120.21 (19)              |
| N2—N1—C7                   | 113.69 (15)       | С12—С13—Н13                     | 119.9                    |
| C2—C7—C6                   | 118.60 (18)       | C8—C13—H13                      | 119.9                    |
| C2—C7—N1                   | 117.50 (17)       | С11—С10—С9                      | 120.64 (19)              |
| C6—C7—N1                   | 123.87 (18)       | C11—C10—H10                     | 119.7                    |
| C3—C2—C7                   | 120.70 (19)       | С9—С10—Н10                      | 119.7                    |
| C3—C2—Cl1                  | 118.97 (17)       | C12—C11—C10                     | 121.27 (19)              |
| C7—C2—Cl1                  | 120.33 (16)       | C12—C11—H11                     | 119.4                    |
| C4-C3-C2                   | 119 4 (2)         | C10-C11-H11                     | 119.4                    |
| C4—C3—H3                   | 120.3             | $C_{11} - C_{12} - C_{13}$      | 119 37 (19)              |
| С?—С3—Н3                   | 120.3             | C11 - C12 - H12                 | 120.3                    |
| $C_{2} = C_{3} = C_{13}$   | 120.3<br>120.4(2) | C13 - C12 - H12                 | 120.3                    |
| C5—C6—H6                   | 119.8             | $C_{15} = C_{16} = C_{17}$      | 120.5                    |
| C7-C6-H6                   | 119.8             | $C_{15} = C_{16} = H_{16}$      | 110.8                    |
| $C_{15} - C_{14} - S_{1}$  | 108 44 (13)       | C17_C16_H16                     | 119.8                    |
| $C_{15} = C_{14} = S_{14}$ | 110.0             | $C_{1}^{2} = C_{10}^{10} = 110$ | 119.0                    |
| S1 C14 H14A                | 110.0             | $C_{20} = C_{15} = C_{16}$      | 110.22(19)<br>120.84(10) |
| SI-CI4-III4A               | 110.0             | $C_{20} = C_{15} = C_{14}$      | 120.84(19)               |
| CI3-CI4-HI4B               | 110.0             | C16 - C13 - C14                 | 120.9 (2)                |
| SI-CI4-HI4B                | 110.0             | C15 - C20 - C19                 | 121.5 (2)                |
| H14A—C14—H14B              | 108.4             | C15-C20-H20                     | 119.3                    |
| C4—C5—C6                   | 120.1 (2)         | C19—C20—H20                     | 119.3                    |
| С4—С5—Н5                   | 119.9             | C18—C19—C20                     | 120.0 (2)                |
| С6—С5—Н5                   | 119.9             | С18—С19—Н19                     | 120.0                    |
| C5—C4—C3                   | 120.7 (2)         | С20—С19—Н19                     | 120.0                    |
| С5—С4—Н4                   | 119.7             | C17—C18—C19                     | 119.3 (2)                |
| C3—C4—H4                   | 119.7             | C17—C18—H18                     | 120.3                    |
| C10—C9—C8                  | 117.69 (17)       | C19—C18—H18                     | 120.3                    |
| C10—C9—S1                  | 124.96 (15)       | C18—C17—C16                     | 120.5 (2)                |
| C8—C9—S1                   | 117.34 (14)       | С18—С17—Н17                     | 119.7                    |
| C13—C8—C9                  | 120.82 (17)       | С16—С17—Н17                     | 119.7                    |
| C13—C8—N2                  | 123.91 (17)       |                                 |                          |
| C8—N2—N1—C7                | -179.16 (14)      | S1—C9—C8—N2                     | -0.1 (2)                 |
| N2—N1—C7—C2                | -168.03 (16)      | N1—N2—C8—C13                    | -10.4 (3)                |
| N2—N1—C7—C6                | 13.7 (3)          | N1—N2—C8—C9                     | 169.87 (16)              |
| C6—C7—C2—C3                | -1.2 (3)          | C9—C8—C13—C12                   | -0.8 (3)                 |
| N1—C7—C2—C3                | -179.52 (16)      | N2-C8-C13-C12                   | 179.50 (18)              |
| C6—C7—C2—Cl1               | 179.09 (15)       | C8—C9—C10—C11                   | -0.5 (3)                 |
| N1—C7—C2—C11               | 0.8 (2)           | S1-C9-C10-C11                   | -179.50 (15)             |
| C7—C2—C3—C4                | 1.0 (3)           | C9—C10—C11—C12                  | -0.4 (3)                 |
| Cl1—C2—C3—C4               | -179.29 (17)      | C10-C11-C12-C13                 | 0.6 (3)                  |
| C2—C7—C6—C5                | 0.3 (3)           | C8—C13—C12—C11                  | 0.0 (3)                  |

# supplementary materials

| N1—C7—C6—C5   | 178.57 (19)  | C17—C16—C15—C20 | -0.2 (3)     |
|---------------|--------------|-----------------|--------------|
| C9—S1—C14—C15 | 178.30 (14)  | C17-C16-C15-C14 | 179.67 (19)  |
| C7—C6—C5—C4   | 0.7 (3)      | S1-C14-C15-C20  | 76.9 (2)     |
| C6—C5—C4—C3   | -0.9 (4)     | S1-C14-C15-C16  | -103.02 (19) |
| C2—C3—C4—C5   | 0.1 (3)      | C16—C15—C20—C19 | 0.2 (3)      |
| C14—S1—C9—C10 | 1.43 (19)    | C14—C15—C20—C19 | -179.71 (19) |
| C14—S1—C9—C8  | -177.62 (14) | C15—C20—C19—C18 | 0.1 (4)      |
| C10—C9—C8—C13 | 1.0 (3)      | C20-C19-C18-C17 | -0.4 (4)     |
| S1—C9—C8—C13  | -179.84 (15) | C19-C18-C17-C16 | 0.3 (4)      |
| C10—C9—C8—N2  | -179.24 (16) | C15-C16-C17-C18 | 0.0 (3)      |
|               |              |                 |              |

Fig. 1





